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Abstract

Abstractive conversation summarization has
received much attention recently. However,
these generated summaries often suffer from
insufficient, redundant, or incorrect content,
largely due to the unstructured and complex
characteristics of human-human interactions.
To this end, we propose to explicitly model
the rich structures in conversations for more
precise and accurate conversation summariza-
tion, by first incorporating discourse relations
between utterances and action triples (“WHO-
DOING-WHAT”) in utterances through struc-
tured graphs to better encode conversations,
and then designing a multi-granularity decoder
to generate summaries by combining all lev-
els of information. Experiments show that
our proposed models outperform state-of-the-
art methods and generalize well in other do-
mains in terms of both automatic evaluations
and human judgments. We have publicly re-
leased our code at https://github.com/
GT-SALT/Structure-Aware-BART.

1 Introduction

Online interaction has become an indispensable
component of everyday life and people are increas-
ingly using textual conversations to exchange ideas,
make plans, and share information. However, it is
time-consuming to recap and grasp all the core con-
tent within every complex conversation (Gao et al.,
2020; Feng et al., 2020). As a result, how to or-
ganize massive everyday interactions into natural,
concise, and informative text, i.e., abstractive con-
versation summarization, starts to gain importance.

Significant progress has been made on abstrac-
tive summarization for structured document via
pointer generator (See et al., 2017), reinforcement
methods (Paulus et al., 2018; Huang et al., 2020a)
and pre-trained models (Liu and Lapata, 2019;
Lewis et al., 2020; Zhang et al., 2019). Despite the
huge success, it is challenging to directly apply doc-
ument models to summarize conversations, due to

Figure 1: An example of discourse relation graph (a)
and action graph (b) from one conversation in SAM-
Sum (Gliwa et al., 2019). The annotated summary is
Simon was on the phone before, so he didn’t here He-
len calling. Simon will fetch Helen some tissues.

a set of inherent differences between conversations
and documents (Gliwa et al., 2019). First, speaker
interruptions like repetitions, false-starts, and hesi-
tations are frequent in conversations (Sacks et al.,
1978), and key information resides in different por-
tions of a conversation. These unstructured proper-
ties pose challenges for models to focus on salient
contents that are necessary for generating both ab-
stractive and informative summaries. Second, there
is more than one speaker in conversations and peo-
ple interact with each other in different language
styles (Zhu et al., 2020b). The complex interactions
among multiple speakers make it harder for mod-

ar
X

iv
:2

10
4.

08
40

0v
1 

 [
cs

.C
L

] 
 1

6 
A

pr
 2

02
1

https://github.com/GT-SALT/Structure-Aware-BART
https://github.com/GT-SALT/Structure-Aware-BART


els to identify and associate speakers with correct
actions so as to generate factual summaries.

In order to summarize the unstructured and com-
plex conversations, a growing body of research
has been conducted, such as transferring document
summarization methods to conversation settings
(Shang et al., 2018; Gliwa et al., 2019), adopting
hierarchical models (Zhao et al., 2019; Zhu et al.,
2020b), or incorporating conversation structures
like topic segmentation (Liu et al., 2019b; Li et al.,
2019; Chen and Yang, 2020), dialogue acts (Goo
and Chen, 2018), and conversation stages (Chen
and Yang, 2020). However, current approaches still
face challenges in terms of succinctness and faith-
fulness, as most prior studies (i) fail to explicitly
model dependencies between utterances which can
help identify salient portions of conversations (Bui
et al., 2009), and (ii) lack structured representations
(Huang et al., 2020a) to learn the associations be-
tween speakers, actions and events. We argue that
these rich linguistic structures associated with con-
versations are key components towards generating
abstractive and factual conversation summaries.

To this end, we present a structure-aware
sequence-to-sequence model, in which we equip
abstractive conversation summarization models
with rich conversation structures through two types
of graphs: discourse relation graph and action
graph. Discourse relation graphs are constructed
based on dependency-based discourse relations
(Kirschner et al., 2012; Stone et al., 2013; Asher
et al., 2016; Qin et al., 2017) between intertwined
utterances, where each Elementary Discourse Unit
(EDU) is one single utterance and they are linked
through 16 different types of relations (Asher et al.,
2016). As shown in Figure 1(a), highly related
utterances are linked based on discourse relations
like Question Answer Pairs, Comment and Expla-
nation. Explicitly modeling these utterances re-
lations in conversations can aid models in recog-
nizing key content for succinct and informative
summarization. Action graphs are constructed as
the “WHO-DOING-WHAT” triplets in conversations
which express socially situated identities and ac-
tivities (Gee, 2014). For instance, in Figure 1(b),
the action graph provides explicit information be-
tween Simon, fetch, and tissues for the utterance it
is Simon who will fetch the tissues, making mod-
els less likely to generate summaries with wrong
references (e.g., Helen will fetch the tissues).

To sum up, our contributions are: (1) We pro-

pose to utilize discourse relation graphs and action
graphs to better encode conversations for conver-
sation summarization. (2) We design structure-
aware sequence-to-sequence models to combine
these structured graphs and generate summaries
with the help of a novel multi-granularity decoder.
(3) We demonstrate the effectiveness of our pro-
posed methods through experiments on a large-
scale conversation summarization dataset, SAM-
Sum (Gliwa et al., 2019). (4) We further show that
our structure-aware models can generalize well in
new domains such as debate summarization.

2 Related Work

Document Summarization Compared to extrac-
tive document summarization (Gupta and Lehal,
2010; Narayan et al., 2018; Liu and Lapata, 2019),
abstractive document summarization is generally
considered more challenging and has received more
attention. Various methods have been designed to
tackle abstractive document summarization like
sequence-to-sequence models (Rush et al., 2015),
pointer generators (See et al., 2017), reinforcement
learning methods (Paulus et al., 2018; Huang et al.,
2020a) and pre-trained models (Lewis et al., 2020;
Zhang et al., 2019). To generate faithful abstractive
document summaries (Maynez et al., 2020), graph-
based models were introduced recently such as
extracting entity types (Fernandes et al., 2018; Fan
et al., 2019), leveraging knowledge graphs (Huang
et al., 2020a; Zhu et al., 2020a) or designing ex-
tra fact correction modules (Dong et al., 2020).
Inspired by these graph-based methods, we also
construct action graphs for generating more factual
conversation summaries.

Conversation Summarization Extractive dia-
logue summarization (Murray et al., 2005) has been
studied extensively via statistical machine learning
methods such as skip-chain CRFs (Galley, 2006),
SVM with LDA models (Wang and Cardie, 2013),
and multi-sentence compression algorithms (Shang
et al., 2018). Such methods struggled with gener-
ating succinct, fluent, and natural summaries, es-
pecially when the key information needs to be ag-
gregated from multiple first-person point-of-view
utterances (Song et al., 2020). Abstractive conver-
sation summarization overcomes these issues by de-
signing hierarchical models (Zhao et al., 2019; Zhu
et al., 2020b), incorporating commonsense knowl-
edge (Feng et al., 2020), or leveraging conversa-
tional structures like dialogue acts (Goo and Chen,



Figure 2: Model architecture. Each utterance is encoded via transformer encoder; discourse relation graphs and
action graphs are encoded through Graph Attention Networks (a). The multi-granularity decoder (b) then generates
summaries based on all levels of encoded information including utterances, action graphs, and discourse graphs.

2018), key point sequences (Liu et al., 2019a), topic
segments (Liu et al., 2019b; Li et al., 2019) and
stage developments (Chen and Yang, 2020). Some
recent research has also utilized discourse relations
as input features in classifiers to detect important
content in conversations (Murray et al., 2006; Bui
et al., 2009; Qin et al., 2017). However, current
models still have not explicitly utilized the depen-
dencies between different utterances, making mod-
els hard to leverage long-range dependencies and
utilize these salient utterances. Moreover, less at-
tention has been paid to identify the actions of
different speakers and how they interact with or re-
fer to each other, leading to unfaithful summariza-
tion with incorrect references or wrong reasoning
(Gliwa et al., 2019). To fill these gaps, we pro-
pose to explicitly model actions within utterances,
and relations between utterances in conversations
in a structured way, by using discourse relation
graphs and action graphs and further combining
these through relational graph encoders and multi-
granularity decoders for abstractive conversation
summarization.

3 Methods

To generate abstractive and factual summaries from
unstructured conversations, we propose to model
structural signals in conversations by first construct-
ing discourse relation graphs and action graphs
(Section 3.1), and then encoding the graphs to-
gether with conversations (Section 3.2) as well as

incorporating these different levels of information
in the decoding stage through a multi-granularity
decoder (Section 3.3) to summarize given conversa-
tions. The overall architecture is shown in Figure 2.

3.1 Structured Graph Construction
This section describes how to construct the dis-
course relation graphs and action graphs. For-
mally, for a given conversation C = {u0, ...,um}
with m utterances, we construct discourse rela-
tion graph GD = (VD,ED), where VD is the
set of nodes representing Elementary Discourse
Units (EDUs), and ED is the adjacent matrix that
describes the relations between EDUs, and action
graph GA = (VA,EA), where VA is the set of
nodes representing “WHO”, “DOING” and “WHAT”
arguments, and EA is the adjacent matrix to link
“WHO-DOING-WHAT” triples.

Discourse Relation Graph Utterances from dif-
ferent speakers do not occur in isolation; instead,
they are related within the context of discourse
(Murray et al., 2006; Qin et al., 2017), which has
been shown effective for dialogue understanding
like identifying the decisions in multi-party dia-
logues (Bui et al., 2009) and detecting salient con-
tent in email conversations (McKeown et al., 2007).
Although current attention-based neural models are
supposed to, or might implicitly, learn certain re-
lations between utterances, they often struggle to
focus on many informative utterances (Chen and
Yang, 2020; Song et al., 2020) and fail to address



long-range dependencies (Xu et al., 2020), espe-
cially when there are frequent interruptions. As a
result, explicitly incorporating the discourse rela-
tions will help neural summarization models better
encode the unstructured conversations and concen-
trate on the most salient utterances to generate more
informative and less redundant summaries.

To do so, we view each utterance as an EDU
and use the discourse relation types defined in
Asher et al. (2016). We first pre-train a discourse
parsing model (Shi and Huang, 2019) on a human-
annotated multiparty dialogue corpus (Asher et al.,
2016), with 0.775 F1 score on link predictions and
0.557 F1 score on relation classifications, which
are comparable to the state-of-the-art results (Shi
and Huang, 2019). We then utilize this pre-trained
parser to predict the discourse relations within con-
versations in our SAMSum corpus (Gliwa et al.,
2019).

After predictions, there are 138,554 edges iden-
tified in total and 8.48 edges per conversation. The
distribution of these predicted discourse relation
types is: Comment (19.3%), Clarification Ques-
tion (15.2%), Elaboration (2.3%), Acknowledge-
ment(8.4%), Continuation (10.1%), Explanation
(2.8%), Conditional (0.2 %), Question Answer Pair
(21.5%), Alternation (0.3%), Q-Elab (2.5%), Re-
sult (5.5%), Background (0.4%), Narration (0.4%),
Correction (0.4%), Parallel (0.9%), and Contrast
(1.0%). Then for each conversation, we construct a
discourse relation graph GD = (VD,ED), where
VD[k] represents the k-th utterance. ED[i][j] = r
if there is a link from the i-th utterance to the j-th
one with discourse relation r.

Action Graph The “who-doing-what” triples
from utterances can provide explicit visualizations
of speakers and their actions, the key to under-
standing concrete details happened in conversa-
tions (Moser, 2001; Gee, 2014; Sacks et al., 1978).
Simply relying on neural models to identify this in-
formation from conversations often fail to produce
factual characterizations of concrete details hap-
pened (Cao et al., 2018; Huang et al., 2020a). To
this end, we extract “WHO-DOING-WHAT” triples
from utterances and construct action graphs for con-
versation summarization (Chen et al., 2019; Huang
et al., 2020b,a). Specifically, we first transform the
first-person point-of-view utterances to its third-
person point-of-view forms based on simple rules:
(i) substituting first/second-person pronouns with
the names of current speaker or surrounding speak-

ers and (ii) replacing third-person pronouns based
on coreference clusters in conversations detected
by the Stanford CoreNLP (Manning et al., 2014).
For example, an utterance “I’ll bring it to you to-
morrow” from Amanda to Jerry will be transformed
into “Amanda’ll bring cakes to Jerry tomorrow”.
Then we extract “WHO-DOING-WHAT” (subject-
predicate-object) triples from transformed conver-
sations using the open information extraction (Ope-
nIE) systems 1 (Angeli et al., 2015). We then con-
struct the Action Graph GA = (VA,EA) from
the extracted triples by taking arguments (“WHO”,
“DOING”, or “WHAT” ) as nodes in VA, and connect
them with edge EA[i][j] = 1 if they are adjacent
in one “WHO-DOING-WHAT” triple.

3.2 Encoder
Given a conversation and its corresponding dis-
course relation graph and action graph, we utilize
an utterance encoder and two graph encoders, to ob-
tain its hidden representations shown in Figure 2(a).

3.2.1 Utterance Encoder
We initialize our utterance encoder FU (.) with a
pre-trained encoder, i.e., BART-base (Lewis et al.,
2020), and encode tokens {xi,0, ..., xi,l} in an ut-
terance ui into its hidden representation:

{hUi,0, ..., hUi,l} = FU ({xi,0, ..., xi,l}) (1)

Here we add a special token xi,0 =<S> at the be-
ginning of each utterance to represent it.

3.2.2 Graph Encoder
Node Initialization For discourse relation
graph, we employ the output embeddings of the
special tokens xi,0 from the utterance encoder, i.e.,
hUi,0, to initialize the i-th node vDi in GD. We use a
one-hot embedding layer to encode the relations
ED[i][j] = eDi,j between utterance i and j. For
action graph, we first utilize FU (.) to encode each
token in nodes vAi and then average their output
embeddings as their initial representations.

Structured Graph Attention Network Based
on Graph Attention Network (Veličković et al.,
2018), we utilize these relations between nodes to
encode each node vDi in GD or vAi in GA through:

αij =
exp

(
σ
(
aT [Wvi‖Wvj‖Weei,j ]

))∑
k∈Ni

exp (σ (aT [Wvi‖Wvk‖Weei,k]))

1https://github.com/philipperemy/
Stanford-OpenIE-Python

https://github.com/philipperemy/Stanford-OpenIE-Python
https://github.com/philipperemy/Stanford-OpenIE-Python


Dataset Split # Conv # Participants # Turns # Discourse Edges # Action Triples

SAMSum
Train 14732 2.40 11.17 8.47 6.72
Val 818 2.39 10.83 8.34 6.48
Test 819 2.36 11.25 8.63 6.81

ADSC Full 45 2.00 7.51 6.51 37.20

Table 1: Statistics of the used datasets, including the total number of conversations (# Conv), the average number
of participants, turns, discourse edges and action triples per conversation.

hi = σ(
∑
j∈Ni

αijWvj)

W, We and a are trainable parameters. [.‖.] de-
notes the concatenation of two vectors. σ is the
activation function, Ni is the set containing node-
i’s neighbours in G.

Through two graph encoders FD(., .) and
FA(., .), we then obtain the hidden representations
of these nodes as:

{hD0 , ..., hDm} = FD({vD0 , ..., vDm},ED) (2)

{hA0 , ..., hAn } = FA({xA0 , ..., xAn },EA) (3)

3.3 Multi-Granularity Decoder
Different levels of encoded representations are then
aggregated via our multi-granularity decoder to
generate summaries as shown in Figure 2(b). With
s− 1 previously generated tokens y1, ..., ys−1, our
decoder G(.) predicts the l-th token via:

ŷ = G(y1:s−1, FU (C), FD(GD), FA(GA)) (4)

P (ỹs|y<s,C,GD,GA) = Softmax(Wpŷ) (5)

To better incorporate the information in con-
structed graphs, different from the traditional pre-
trained BART model (Lewis et al., 2020), we im-
prove the BART transformer decoder with two ex-
tra cross attentions (Discourse Attention and Ac-
tion Attention) added to each decoder layer, which
attends to the encoded node representations in dis-
course relation graphs and action graphs.

In each decoder layer, after performing the origi-
nal cross attentions over every token in utterances
{hUi,0:l} and getting the utterance-attended represen-
tation xU , multi-granularity decoder then conducts
cross attentions over nodes {hD0:m} and {hA0:n} that
are encoded from graph encoders in parallel, to
obtain the discourse-attended representation xD

and action-attended representation xA. These two
attended vectors are then combined into a structure-
aware representation xS , through a feed-forward
network for further forward passing in the decoder.

To alleviate the negative impact of randomly
initialized graph encoders and cross attentions
over graphs on pre-trained BART decoders at
early stages and accelerate the learning of newly-
introduced modules during training, we apply
ReZero (Bachlechner et al., 2020) to the residual
connection after attending to graphs in each de-
coder layer:

x̃S = xU + αxS (6)

where α is one trainable parameter instead of a
fixed value 1, which modulates updates from cross
attentions over graphs.

Training During training, we seek to minimize
the cross entropy and use the teacher-forcing strat-
egy (Bengio et al., 2015):

L = −
∑

logP (ỹl|y<l,C,GD,GA) (7)

4 Experiments

4.1 Datasets
We trained and evaluated our models on a conversa-
tion summarization dataset SAMSum (Gliwa et al.,
2019) covering messenger-like conversations about
daily topics, such as arranging meetings and dis-
cussing events. We also showed the generalizability
of our models on the Argumentative Dialogue Sum-
mary Corpus (ADSC) (Misra et al., 2015), a debate
summarization corpus. The data statistics of two
datasets were shown in Table 1, with the discourse
relation types distributions in the Appendix.

4.2 Baselines
We compare our methods with several baselines:

• Pointer Generator (See et al., 2017): We fol-
lowed the settings in Gliwa et al. (2019) and
used special tokens to separate each utterance.

• Transformer (Vaswani et al., 2017): We
trained transformer seq2seq models follow-
ing the OpenNMT (Klein et al., 2017).



Model ROUGE-1 ROUGE-2 ROUGE-L
F P R F P R F P R

Pointer Generator (See et al., 2017) 40.08 - - 15.28 - - 36.63 - -
Transformer (Vaswani et al., 2017) 37.27 - - 10.76 - - 32.73 - -

D-HGN (Feng et al., 2020) 42.03 - - 18.07 - - 39.56 - -
Multi-view Seq2Seq (Chen and Yang, 2020) 45.56 52.13 44.68 22.30 25.58 22.03 44.70 50.82 43.29

BART (Lewis et al., 2020) 45.15 49.58 45.97 21.66 23.95 22.16 44.46 48.92 44.26
S-BART w. Discourse † 45.89 51.34 45.87 22.50 25.26 22.33 44.83 49.93 44.17

S-BART w. Action † 45.67 50.25 46.44 22.39 24.70 22.96 44.86 49.29 44.75
S-BART w. Discourse&Action † 46.07 51.13 46.24 22.60 25.11 22.81 45.00 49.82 44.47

Table 2: ROUGE-1, ROUGE-2 and ROUGE-L scores for different models on the SAMSum Corpus test set. Results
are averaged over three random runs. † means our methods. We performed Pitman’s permutation test (Dror et al.,
2018) and found that S-BART w. Discourse& Action significantly outperformed the base BART (p < 0.05).

Model ROUGE-1 ROUGE-2 ROUGE-L
F P R F P R F P R

BART (Lewis et al., 2020) 20.90 51.71 13.53 5.04 12.46 3.24 21.23 56.29 13.54
S-BART w. Discourse † 22.42 54.13 14.60 5.58 13.83 3.61 22.16 51.88 14.45

S-BART w. Action † 30.91 85.42 19.12 20.64 56.31 12.78 35.30 85.51 22.58
S-BART w. Discourse&Action † 34.74 84.99 22.20 23.86 58.08 15.24 38.69 83.81 25.51

Table 3: ROUGE-1, ROUGE-2 and ROUGE-L scores on the out-of-domain ADSC corpus using different models
trained on SAMSum Corpus. † means our methods.

• D-HGN (Feng et al., 2020) incorporated com-
monsense knowledge from ConceptNet (Liu
and Singh, 2004) for dialogue summarization.

• BART (Lewis et al., 2020): We utilized BART
2, and separated utterances by a special token.

• Multi-View Seq2Seq (Chen and Yang, 2020)
utilized topic and stage views on top of BART
for summarizing conversations. Here we im-
plemented it based on BART-base models.

4.3 Implementation Details
We used the BART-base model to initialize our
sequence-to-sequence model for training in all ex-
periments. For parameters in the original BART
encoder/decoder, we followed the default settings
and set the learning rate 3e-5 with 120 warm-up
steps. For graph encoders, we set the number of
hidden dimensions as 768, the number of atten-
tion heads as 2, the number of layers as 2, and
the dropout rate as 0.2. For graph cross attentions
added to BART decoder layers, we set the number
of attention heads as 2. The weights α in ReZero
residual connections were initialized with 1. The
learning rate for parameters in newly added mod-
ules was 3e-4 with 60 warm-up steps. All exper-
iments were performed on GeForce RTX 2080Ti
(11GB memory).

2The version on 10/7 in https://huggingface.co/
transformers/model_doc/bart.html

Models Fac. Suc. Inf.
Ground Truth 4.29 4.40 4.06

BART 3.90 4.13 3.74
S-BART w. Discourse 4.11 4.42 3.98

S-BART w. Action 4.17 4.29 3.95
S-BART w. Discourse&Action 4.19 4.41 3.91

Table 4: Human evaluation on Factualness,
Succinctness, Informativeness. All model vari-
ants of S-BART received significantly higher ratings
than BART (student t-test, p < 0.05).

4.4 Results on In-Domain Corpus
Automatic Evaluation We evaluated all the
models with the widely used automatic metric,
ROUGE scores (Lin and Och, 2004) 3, and re-
ported ROUGE-1, ROUGE-2, and ROUGE-L in
Table 2. We found that, compared to simple
sequence-to-sequence models (Pointer Generator
and Transformer), incorporating extra information
such as commonsense knowledge from ConceptNet
(D-HGN) increased the ROUGE metrics. When
equipped with pre-trained models and simple con-
versation structures such as topics and conversa-
tion stages, Multi-View Seq2Seq boosted ROUGE
scores. Incorporating discourse relation graphs or
action graphs helped the performances of summa-
rization, suggesting the effectiveness of explicitly
modeling relations between utterances and the asso-
ciations between speakers and actions within utter-

3We followed fairseq and used https://github.
com/pltrdy/rouge to calculate ROUGE scores. Note
that different tools may result in different ROUGE scores.

https://huggingface.co/transformers/model_doc/bart.html
https://huggingface.co/transformers/model_doc/bart.html
https://github.com/pltrdy/rouge
https://github.com/pltrdy/rouge


ances. Combining two different structured graphs
produced better ROUGE scores compared to previ-
ous state-of-the-art methods and our base models,
with an increase of 2.0% on ROUGE-1, 4.3% on
ROUGE-2, and 1.2% on ROUGE-L compared to
our base model, BART. This indicates that, our
structure-aware models with discourse and action
graphs could help abstractive conversation summa-
rization, and these two graphs complemented each
other in generating better summaries.

Human Evaluation We conducted human eval-
uation to qualitatively evaluate the generated sum-
maries. Specifically, we asked annotators from
Amazon Mechanical Turk to score a set of ran-
domly sampled 100 generated summaries from
ground-truth, BART and our structured models,
using a Likert scale from 1 (worst) to 5 (best) in
terms of factualness (e.g., associates actions with
the right actors) , succinctness (e.g., does not con-
tain redundant information), and informativeness
(e.g., covers the most important content) (Feng
et al., 2020; Huang et al., 2020a). To increase an-
notation quality, we required turkers to have a 98%
approval rate and at least 10,000 approved tasks for
their previous work. Each message was rated by
three workers. The scores for each summary were
averaged. The Intra-Class Correlation was 0.543,
showing moderate agreement (Koo and Li, 2016).

As shown in Table 4, S-BART that utilized struc-
tured information from discourse relation graphs
and action graphs generated significantly better
summaries with respect to factualness, succinct-
ness, and informativeness. This might because that
the incorporation of structured information such
as discourse relations helped S-BART to recognize
the salient parts in conversations, and thus improve
the succinctness and informativeness over BART.
Modeling the connections between speakers and
actions greatly helped generate more factual sum-
maries than the baselines, e.g., with an increase of
0.27 from BART to S-BART w. Action.

4.5 Results on Out-Of-Domain Corpus

To investigate the generalizability of our structure-
aware models, we then tested the S-BART model
trained on SAMSum corpus directly on the de-
bate summarization domain (ADSC Corpus (Misra
et al., 2015)) in a zero-shot setting. Besides the
differences in topics, utterances in debate conver-
sations were generally longer and include more ac-
tion triples (37.20 vs 6.81 as shown in Table 1) and

Graph Types R-1 R-2 R-L
S-BART w. Discourse Graph 45.89 22.50 44.83
S-BART w. Random Graph 45.28 21.80 44.30

Table 5: ROUGE-1, ROUGE-2 and ROUGE-L scores
of S-BART with either the constructed discourse rela-
tion graphs or random graphs. Results are averaged
over three random runs.

Combination Strategy R-1 R-2 R-L
Parallel 46.07 22.60 45.00

Sequential (discourse, action) 45.40 22.14 44.67
Sequential (action, discourse) 45.62 22.41 44.62

Table 6: ROUGE-1, ROUGE-2 and ROUGE-L scores
of S-BART models using different ways to combine dis-
course relation graphs and action graphs. Results are
averaged over three random runs.

fewer participants. The distribution of discourse
relation types also differed a lot across different
domains4 (e.g., more Contrast in debates (19.5%)
than in daily conversations (1.0%)).

As shown in Table 3, our single graph mod-
els S-BART w. Discourse and S-BART w. Action
boosted ROUGE scores compared to BART, sug-
gesting that utilizing structures can also increase
the generalizability of conversation summarization
methods. However, contrary to in-domain results
in Table 2, action graphs led to much more gains
than discourse graphs. This indicated that when do-
main shifts, action triples were most robust in terms
of zero-shot setups; differences in discourse rela-
tion distributions could limit such generalization.
Consistent with in-domain scenarios, our S-BART
w. Discourse&Action achieved better results, with
an increase of 66.2% on ROUGE-1, 373.4% on
ROUGE-2, and 82.2% on ROUGE-L over BART.

4.6 Ablation Studies

This part conducted ablation studies to show the
effectiveness of structured graphs in our S-BART.

The Quality of Discourse Relation Graphs We
showed how the quality of discourse relation graphs
affected the performances of conversation summa-
rization in Table 5. Specifically, we compared the
ROUGE scores of S-BART using our constructed
discourse relation graphs (S-BART w. Discourse
Graph) and S-BART using randomly generated dis-
course relation graphs S-BART w. Random Graph
where both connections between nodes and rela-
tion types were randomized. The number of edges

4The detailed distributions were shown in the Appendix.



Figure 3: Averaged α over decoder layers in the trained
S-BART models using different graphs

in two graphs was kept the same. We found that
S-BART with our discourse graphs outperformed
models with random graphs, indicating the ef-
fectiveness of the constructed discourse relation
graphs and the importance of their qualities.

Different Ways to Combine Graphs We exper-
imented with different ways to combine discourse
relation graphs and action graphs in our S-BART
w. Discourse & Action, and presented the results
in Table 6. Here, parallel strategy performed cross
attentions on different graphs separately and then
combined the attended results with feed-forward
networks as discussed in Section 3.3; sequential
strategy performed cross attentions on two graphs
in a specific order (from discourse relation graphs
to actions graphs, or vice versa). We found that the
parallel strategy showed better performances and
the sequential ones did not introduce gains com-
pared to S-BART with single graphs. This demon-
strates that discourse relation graphs and action
graphs were both important and provided different
signals for abstractive conversation summarization.

Visualizing ReZero Weights We further tested
our structure-aware BART with two ReZero set-
tings: (i) initializing α from 0, (ii) initializing α
from 1, and found initializing α from 1 would bring
in more performance gains (see Appendix). We
then visualized the average α over different de-
coder layers after training in Figure 3, and observed
that (i) when α was initialized with 1, the final
α was much larger than the setting where α was
initialized with 0, which might because randomly
initialized modules barely received supervisions at
early stages and therefore contributes less to BART.
(ii) Compared to discourse graphs, action graphs
received higher α weights after training in both
initializing settings, suggesting that the informa-
tion from structured action graphs might be harder

Conversations # Num # Dis. # Act.
Test Set 819 8.63 6.81
Similar 373 8.31 6.36
Increase 208 9.13 7.40

Challenging 160 9.58 7.85

Table 7: The total number of examples, average num-
ber of Discourse edges and Action triples in different
set of conversations in the SAMSUM test set.

for the end-to-end BART models to capture. (iii)
Utilizing both graphs spontaneously led to higher
ReZero weights, further validating the effective-
ness of combining discourse relation graphs and
action graphs and their complementary properties.

4.7 Error Analyses

To inspect when our summarization models could
help the conversations summarization, we visual-
ized the average number of discourse edges and the
average number of action triples in three sets of con-
versations in Table 7: (i) Similar: examples where
S-BART generated similar ROUGE scores (the dif-
ferences were less than 0.1) compared to BART;
(ii) Increase: examples where S-BART resulted in
higher ROUGE scores (the differences were larger
than 1.0) compared to BART; (iii) Challenging:
examples where both S-BART and BART showed
low ROUGE scores (ROUGE-1 < 20.0, ROUGE-2
< 10.0, ROUGE-L < 10.0).

When the structures in conversations were sim-
pler (fewer discourse edges and fewer action triples
than the average), BART showed similar perfor-
mance as S-BART. As the structures of conversa-
tions become more complex with more discourse
relations and more action mentions, S-BART out-
performed BART as it explicitly incorporated these
structured graphs. However, both BART and S-
BART struggled when there were much more inter-
actions beyond certain thresholds, calling for better
mechanisms to model structures in conversations
for generating better summaries.

5 Conclusion

In this work, we introduced a structure-aware
sequence-to-sequence model for abstractive conver-
sation summarization by incorporating discourse
relations between utterances, and the connections
between speakers and actions within utterances.
Experiments and ablation studies on SAMSum cor-
pus showed the effectiveness of these structured



graphs in aiding the task of conversation summa-
rization via both quantitative and qualitative eval-
uation metrics. Results in zero-shot settings on
ADCS Corpus further demonstrated the generaliz-
ability of our structure-aware models. In the future,
we plan to extend our current conversation sum-
marization models for various application domains
such as emails, debates, and podcasts, and in con-
versations that might involve longer utterances and
more participants in an unsynchronized way.

Acknowledgment

We would like to thank the anonymous reviewers
for their helpful comments, and the members of
Georgia Tech SALT group for their feedback. This
work is supported in part by grants from Google,
Amazon and Salesforce.

References
Gabor Angeli, Melvin Jose Johnson Premkumar, and

Christopher D. Manning. 2015. Leveraging linguis-
tic structure for open domain information extraction.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
344–354, Beijing, China. Association for Computa-
tional Linguistics.

Nicholas Asher, Julie Hunter, Mathieu Morey, Bena-
mara Farah, and Stergos Afantenos. 2016. Dis-
course structure and dialogue acts in multiparty di-
alogue: the stac corpus. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC’16), pages 2721–2727.

Thomas Bachlechner, Bodhisattwa Prasad Majumder,
Huanru Henry Mao, Garrison W Cottrell, and Ju-
lian McAuley. 2020. Rezero is all you need:
Fast convergence at large depth. arXiv preprint
arXiv:2003.04887.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In Advances in Neural Information Processing Sys-
tems, pages 1171–1179.

Trung Bui, Matthew Frampton, John Dowding, and
Stanley Peters. 2009. Extracting decisions from
multi-party dialogue using directed graphical mod-
els and semantic similarity. In Proceedings of the
SIGDIAL 2009 Conference, pages 235–243, London,
UK. Association for Computational Linguistics.

Ziqiang Cao, Furu Wei, W. Li, and Sujian Li. 2018.
Faithful to the original: Fact aware neural abstrac-
tive summarization. In AAAI.

Jiaao Chen, Jianshu Chen, and Zhou Yu. 2019. In-
corporating structured commonsense knowledge in
story completion. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
6244–6251.

Jiaao Chen and Diyi Yang. 2020. Multi-view sequence-
to-sequence models with conversational structure
for abstractive dialogue summarization. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4106–4118, Online. Association for Computational
Linguistics.

Yue Dong, Shuohang Wang, Zhe Gan, Yu Cheng,
Jackie Chi Kit Cheung, and Jingjing Liu. 2020.
Multi-fact correction in abstractive text summariza-
tion. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 9320–9331, Online. Associa-
tion for Computational Linguistics.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Re-
ichart. 2018. The hitchhiker’s guide to testing statis-
tical significance in natural language processing. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1383–1392.

Angela Fan, Claire Gardent, Chloé Braud, and Antoine
Bordes. 2019. Using local knowledge graph con-
struction to scale seq2seq models to multi-document
inputs. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4177–4187.

Xiachong Feng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2020. Incorporating commonsense knowl-
edge into abstractive dialogue summarization via
heterogeneous graph networks. arXiv preprint
arXiv:2010.10044.

Patrick Fernandes, Miltiadis Allamanis, and Marc
Brockschmidt. 2018. Structured neural summariza-
tion. In International Conference on Learning Rep-
resentations.

Michel Galley. 2006. A skip-chain conditional random
field for ranking meeting utterances by importance.
In Proceedings of the 2006 Conference on Empiri-
cal Methods in Natural Language Processing, pages
364–372.

Shen Gao, Xiuying Chen, Zhaochun Ren, Dongyan
Zhao, and Rui Yan. 2020. From standard sum-
marization to new tasks and beyond: Summariza-
tion with manifold information. arXiv preprint
arXiv:2005.04684.

James Paul Gee. 2014. An introduction to discourse
analysis: Theory and method. Routledge.

https://doi.org/10.3115/v1/P15-1034
https://doi.org/10.3115/v1/P15-1034
https://www.aclweb.org/anthology/W09-3934
https://www.aclweb.org/anthology/W09-3934
https://www.aclweb.org/anthology/W09-3934
https://www.aclweb.org/anthology/2020.emnlp-main.336
https://www.aclweb.org/anthology/2020.emnlp-main.336
https://www.aclweb.org/anthology/2020.emnlp-main.336
https://www.aclweb.org/anthology/2020.emnlp-main.749
https://www.aclweb.org/anthology/2020.emnlp-main.749


Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and
Aleksander Wawer. 2019. SAMSum corpus: A
human-annotated dialogue dataset for abstractive
summarization. In Proceedings of the 2nd Workshop
on New Frontiers in Summarization, pages 70–79,
Hong Kong, China. Association for Computational
Linguistics.

Chih-Wen Goo and Yun-Nung Chen. 2018. Abstrac-
tive dialogue summarization with sentence-gated
modeling optimized by dialogue acts. 2018 IEEE
Spoken Language Technology Workshop (SLT).

Vishal Gupta and Gurpreet Singh Lehal. 2010. A
survey of text summarization extractive techniques.
Journal of emerging technologies in web intelli-
gence, 2(3):258–268.

Luyang Huang, Lingfei Wu, and Lu Wang. 2020a.
Knowledge graph-augmented abstractive summa-
rization with semantic-driven cloze reward. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5094–
5107, Online. Association for Computational Lin-
guistics.

Shanshan Huang, Kenny Q. Zhu, Qianzi Liao, Libin
Shen, and Yinggong Zhao. 2020b. Enhanced story
representation by conceptnet for predicting story
endings. In Proceedings of the 29th ACM Interna-
tional Conference on Information Knowledge Man-
agement, CIKM 2020, page 3277–3280, New York,
NY, USA. Association for Computing Machinery.

Paul A Kirschner, Simon J Buckingham-Shum, and
Chad S Carr. 2012. Visualizing argumentation: Soft-
ware tools for collaborative and educational sense-
making. Springer Science & Business Media.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M. Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.

Terry K Koo and Mae Y Li. 2016. A guideline of
selecting and reporting intraclass correlation coeffi-
cients for reliability research. Journal of chiroprac-
tic medicine, 15(2):155–163.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Manling Li, Lingyu Zhang, Heng Ji, and Richard J.
Radke. 2019. Keep meeting summaries on topic:
Abstractive multi-modal meeting summarization. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2190–2196, Florence, Italy. Association for Compu-
tational Linguistics.

Chin-Yew Lin and Franz Josef Och. 2004. Auto-
matic evaluation of machine translation quality us-
ing longest common subsequence and skip-bigram
statistics. In Proceedings of the 42nd Annual Meet-
ing on Association for Computational Linguistics,
page 605. Association for Computational Linguis-
tics.

Chunyi Liu, Peng Wang, Jiang Xu, Zang Li, and
Jieping Ye. 2019a. Automatic dialogue summary
generation for customer service. In Proceedings of
the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD19,
page 1957–1965, New York, NY, USA. Association
for Computing Machinery.

H. Liu and P. Singh. 2004. Conceptnet — a practi-
cal commonsense reasoning tool-kit. BT Technology
Journal, 22(4):211–226.

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3721–3731.

Zhengyuan Liu, Angela Ng, Sheldon Lee, Ai Ti Aw,
and Nancy F. Chen. 2019b. Topic-aware pointer-
generator networks for summarizing spoken conver-
sations. 2019 IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU).

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60, Bal-
timore, Maryland. Association for Computational
Linguistics.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1906–1919, On-
line. Association for Computational Linguistics.

K. McKeown, Lokesh Shrestha, and Owen Rambow.
2007. Using question-answer pairs in extractive
summarization of email conversations. In CICLing.

Amita Misra, Pranav Anand, Jean E. Fox Tree, and
Marilyn Walker. 2015. Using summarization to dis-
cover argument facets in online idealogical dialog.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 430–440, Denver, Colorado. Association for
Computational Linguistics.

Beverly Moser. 2001. An introduction to discourse
analysis. theory and method.

https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.1109/slt.2018.8639531
https://doi.org/10.1109/slt.2018.8639531
https://doi.org/10.1109/slt.2018.8639531
https://doi.org/10.18653/v1/2020.acl-main.457
https://doi.org/10.18653/v1/2020.acl-main.457
https://doi.org/10.1145/3340531.3417466
https://doi.org/10.1145/3340531.3417466
https://doi.org/10.1145/3340531.3417466
http://arxiv.org/abs/1701.02810
http://arxiv.org/abs/1701.02810
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/P19-1210
https://doi.org/10.18653/v1/P19-1210
https://doi.org/10.1145/3292500.3330683
https://doi.org/10.1145/3292500.3330683
https://doi.org/10.1023/B:BTTJ.0000047600.45421.6d
https://doi.org/10.1023/B:BTTJ.0000047600.45421.6d
https://doi.org/10.1109/asru46091.2019.9003764
https://doi.org/10.1109/asru46091.2019.9003764
https://doi.org/10.1109/asru46091.2019.9003764
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.3115/v1/N15-1046
https://doi.org/10.3115/v1/N15-1046


Gabriel Murray, S. Renals, and J. Carletta. 2005. Ex-
tractive summarization of meeting recordings. In
INTERSPEECH.

Gabriel Murray, Steve Renals, Jean Carletta, and Jo-
hanna Moore. 2006. Incorporating speaker and dis-
course features into speech summarization. In Pro-
ceedings of the Human Language Technology Con-
ference of the NAACL, Main Conference, pages 367–
374, New York City, USA. Association for Compu-
tational Linguistics.

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018. Ranking sentences for extractive summariza-
tion with reinforcement learning. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1747–1759.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In International Conference on Learn-
ing Representations.

Kechen Qin, Lu Wang, and Joseph Kim. 2017. Joint
modeling of content and discourse relations in dia-
logues. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 974–984.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379–389, Lisbon, Portugal.
Association for Computational Linguistics.

Harvey Sacks, Emanuel A Schegloff, and Gail Jeffer-
son. 1978. A simplest systematics for the organiza-
tion of turn taking for conversation. In Studies in the
organization of conversational interaction, pages 7–
55. Elsevier.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers).

Guokan Shang, Wensi Ding, Zekun Zhang, An-
toine Tixier, Polykarpos Meladianos, Michalis Vazir-
giannis, and Jean-Pierre Lorré. 2018. Unsuper-
vised abstractive meeting summarization with multi-
sentence compression and budgeted submodular
maximization. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 664–
674, Melbourne, Australia. Association for Compu-
tational Linguistics.

Zhouxing Shi and Minlie Huang. 2019. A deep sequen-
tial model for discourse parsing on multi-party dia-
logues. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 7007–7014.

Kaiqiang Song, Chen Li, Xiaoyang Wang, Dong
Yu, and Fei Liu. 2020. The ucf podcast sum-
marization system at trec 2020. arXiv preprint
arXiv:2011.04132.

Matthew Stone, Una Stojnic, and Ernest Lepore. 2013.
Situated utterances and discourse relations. In Pro-
ceedings of the 10th International Conference on
Computational Semantics (IWCS 2013)–Short Pa-
pers, pages 390–396.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.
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Model ROUGE-1 ROUGE-2 ROUGE-L
F P R F P R F P R

BART (Lewis et al., 2020) 45.15 49.58 45.97 21.66 23.95 22.16 44.46 48.92 44.26
S-BART w. Discourse α = 0 † 45.40 50.22 45.86 21.96 24.49 22.25 44.56 49.32 44.13

S-BART w. Action α = 0 † 45.47 50.82 45.42 22.23 24.96 22.34 44.55 49.69 43.75
S-BART w. Discourse&Action α = 0 † 45.59 51.47 45.09 22.42 25.51 22.27 44.67 50.24 43.52

S-BART w. Discourse α = 1 † 45.89 51.34 45.87 22.50 25.26 22.33 44.83 49.93 44.17
S-BART w. Action α = 1 † 45.67 50.25 46.44 22.39 24.70 22.96 44.86 49.29 44.75

S-BART w. Discourse&Action α = 1 † 46.07 51.13 46.24 22.60 25.11 22.81 45.00 49.82 44.47

Table 8: Results on SAMSum Corpus. ROUGE-1, ROUGE-2 and ROUGE-L scores for different models on the
test set. Results are averaged over three random runs. † means our methods.

Discourse Type SAMSum ADSC
Comment 19.3% 42.7%

Clarification 15.2% 13.3%
Elaboration 2.3% 0.1%

Acknowlegement 8.4% 0.9%
Explanation 2.8% 0.3%
Conditional 0.2% 0%

QA pair 21.5% 12.3%
Alternation 0.3% 0.6%

Result 5.5% 0.2%
Backgraound 0.4% 0%

Narration 0.4% 0%
Correction 0.4% 1.1%

Continuation 0.9% 7.5%
Q-Elab 2.5% 0%
Parallel 0.9% 0%
Contrast 1.0% 19.5%

Table 9: The distribution of predicted discourse relation
types on SAMSum Corpus and ADSC Corpus.

A Discourse Relation Distributions

We pre-trained a deep sequential model (Shi and
Huang, 2019) on STAC Corpus (1,062 dialogues)
(Asher et al., 2016) with default settings 5 to get the
link prediction and relation classification models to
label discourse relations in SAMSum and ADSC
corpus. The distribution of the relation types in
two datasets were shown in Table 9. The major
discourse relations in daily conversations are Com-
ment, Clarification and QA pairs, while the main
discourse relations in debate are Comment, Con-
trast, Clarification and QA pairs.

B Impact of Different ReZero Weight
Initializations

We tested our structure-aware BART (S-BART w.
Discourse/Action) within two ReZero settings: (i)

5https://github.com/shizhouxing/
DialogueDiscourseParsing

initializing α from 0, (ii) initializing α from 1. And
the results were shown in Table 8. S-BART with
1 as the initialized ReZero weight outperformed
that with 0 under under all graph settings, suggest-
ing utilizing more information from graphs would
bring in more performance boosts.
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